It appears you have not yet registered with our community. To register please click here...

 
Go Back [M] > Madshrimps > WebNews
ARM Details Project Trillium MLP Architecture ARM Details Project Trillium MLP Architecture
FAQ Members List Calendar Search Today's Posts Mark Forums Read


ARM Details Project Trillium MLP Architecture
Reply
 
Thread Tools
Old 25th May 2018, 09:06   #1
[M] Reviewer
 
Stefan Mileschin's Avatar
 
Join Date: May 2010
Location: Romania
Posts: 153,514
Stefan Mileschin Freshly Registered
Default ARM Details Project Trillium MLP Architecture

Arm first announced Project Trillium machine learning IPs back in February and we were promised we’d be hearing more about the product in a few months’ time. Project Trillium is unusual for Arm to talk about because the IP hasn’t been finalised yet and won’t be finished until this summer, yet Arm made sure not to miss out on the machine learning and AI “hype train” that has happened over the last 8 months in both the semiconductor industry and as well as particularly in the mobile industry.

Today Arm details more of the architecture of what Arm now seems to more consistently call their “machine learning processor” or MLP from here on now. The MLP IP started off a blank sheet in terms of architecture implementation and the team consists of engineers pulled off from the CPU and GPU teams.

With the MLP Arm set out to provide three key aspects that are demanded in machine learning IPs: Efficiency of convolutional computations, efficient data movement, and sufficient programmability. From a high level perspective the MLP seems no different than many other neural network accelerator IPs out there. It still has a set of MAC engines for the raw computational power, while offering some sort of programmable control flow block alongside a sufficiently robust memory subsystem.

Starting off at a more detailed view of the IP’s block diagram, the MLP consists of common functional blocks such as the memory interconnect interfaces as well as a DMA engine. The above graphic we see portrayal of the data flow (green arrows) and control flow (red arrows) throughout the functional blocks of the processor. The SRAM is a common block to the MLP sized at 1MB which serves as the local buffer for computations done by the compute engines. The compute engines each contained fixed function blocks which operate on the various layers of the neural network model, such as input feature map read blocks which pass onto control information to a weight decoder.

https://www.anandtech.com/show/12791...p-architecture
Stefan Mileschin is offline   Reply With Quote
Reply


Similar Threads
Thread Thread Starter Forum Replies Last Post
ARM Announces Project Trillium Machine Learning IPs Stefan Mileschin WebNews 0 17th February 2018 15:50
ARM details its future Mali-Cetus GPU architecture Stefan Mileschin WebNews 0 4th May 2017 09:48
Microsoft’s Project Scorpio: More Hardware Details Revealed Stefan Mileschin WebNews 0 7th April 2017 07:47
Microsoft Details Project Olympus Open Compute Standard Stefan Mileschin WebNews 0 13th March 2017 10:15
ARM Reveals Cortex-A72 Architecture Details Stefan Mileschin WebNews 0 24th April 2015 08:28
NVIDIA Reveals First Details about Project Denver CPU Core Stefan Mileschin WebNews 0 6th January 2014 12:16
Intel Reveals Architecture Details of Intel Xeon Phi Co-Processor Stefan Mileschin WebNews 0 31st August 2012 08:21
Google's Project Glass gets some more details Stefan Mileschin WebNews 0 28th June 2012 09:05
A look at VIA's next-gen Isaiah x86 CPU architecture Sidney WebNews 0 25th January 2008 05:23
AMD talks details of "Bulldozer," the first completely new architecture since K8 jmke WebNews 0 27th July 2007 18:51

Thread Tools

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off


All times are GMT +1. The time now is 14:28.


Powered by vBulletin® - Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
SEO by vBSEO